您现在的位置:首页 >> 机器学习 >> 内容

基于Simulink的RBF神经网络的LMS自适应滤波器设计仿真

时间:2022/12/6 18:21:08 点击:

  核心提示:a94包括matlab仿真录像...

1.完整项目描述和程序获取

>面包多安全交易平台:https://mbd.pub/o/bread/Y5ibm59x

>如果链接失效,可以直接打开本站店铺搜索相关店铺:

点击店铺

>如果链接失效,程序调试报错或者项目合作可以加微信或者QQ联系。

2.部分源码


3.部分仿真图预览


4.算法概述

        LMS(Least Mean Square), 由 Widrow 和 Hoff 于1960年提出,也称Δ规则。该算法与感知器网络的学习算法在权值调整上都基于纠错学习规则,但 LMS 更易实现,因此得到广泛应用,成为自适应滤波的标准算法。LMS滤波器是一类能够“学习”未知传递函数的自适应滤波器。 LMS 滤波器使用一种梯度下降法,其中滤波器系数根据瞬时误差信号更新。自适应滤波器常用于通信系统、均衡器和噪声去除。

       LMS过滤器由两个组件组成,如下图所示。第一个组件是一个标准的横向或FIR滤波器。第二部分是系数更新机制。LMS滤波器有两个输入信号。“输入”输入FIR滤波器,而“参考输入”对应于FIR滤波器的期望输出。即更新FIR滤波器系数,使FIR滤波器的输出与参考输入匹配。滤波器系数更新机制是基于FIR滤波器输出与参考输入之间的差值。随着滤波器的适应,这个“错误信号”趋于零。LMS处理函数接受输入和参考输入信号,生成滤波输出和误差信号。

        RBF神经网络通常只有三层,即输入层、中间层和输出层。其中中间层主要计算输入x和样本矢量c(记忆样本)之间的欧式距离的Radial Basis Function (RBF)的值,输出层对其做一个线性的组合。

作者:我爱C编程 来源:我爱C编程
本站最新成功开发工程项目案例
相关文章
相关评论
发表我的评论
  • 大名:
  • 内容:
本类固顶
  • 没有
  • FPGA/MATLAB商业/科研类项目合作(www.store718.com) © 2025 版权所有 All Rights Reserved.
  • Email:1480526168@qq.com 站长QQ: 1480526168