您现在的位置:首页 >> 机器学习 >> 内容

m基于深度学习网络的中药识别系统matlab仿真,包含GUI界面

时间:2024/3/10 19:03:40 点击:

  核心提示:0Y_020m,包括仿真操作录像...

1.完整项目描述和程序获取

>面包多安全交易平台:https://mbd.pub/o/bread/Y5iUl5lv

>如果链接失效,可以直接打开本站店铺搜索相关店铺:

点击店铺

>如果链接失效,程序调试报错或者项目合作可以加微信或者QQ联系。

2.部分仿真图预览


3.算法概述

 中药识别是中医药领域中的一项重要任务,对于确保药品质量、保障用药安全具有重要意义。传统的中药识别方法主要依赖人工经验和形态特征,但存在主观性强、效率低下等问题。近年来,深度学习在图像识别领域取得了显著进展,为中药识别提供了新的解决方案。中药作为我国传统的医学瑰宝,其种类繁多,形态各异,识别难度较大。传统的中药识别方法主要依赖药师的视觉判断和经验积累,但受到个人知识水平和主观因素的影响,识别准确率难以保证。随着计算机视觉和深度学习技术的发展,基于深度学习网络的中药识别系统成为研究的热点,其能够通过学习大量的中药图像数据,自动提取特征并进行分类识别,有效提高了识别的准确性和效率。

4.部分源码

...............................................................................

Name1   = get(handles.edit7, 'String');

NEpochs = str2num(get(handles.edit8, 'String'));

NMB     = str2num(get(handles.edit9, 'String'));

LR      = str2num(get(handles.edit10, 'String'));

Rate    = str2num(get(handles.edit11, 'String'));

 

 

% 使用 imageDatastore 加载图像数据集

Dataset = imageDatastore(Name1, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');

% 将数据集分割为训练集、验证集和测试集

[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, Rate, (1-Rate)/2, (1-Rate)/2);

% 加载预训练的 GoogleNet 网络

load googlenet.mat

 

 

% 获取输入层的大小

Input_Layer_Size = net.Layers(1).InputSize(1:2);

 

% 将图像数据集调整为预训练网络的输入尺寸

Resized_Training_Dataset   = augmentedImageDatastore(Input_Layer_Size ,Training_Dataset);

Resized_Validation_Dataset = augmentedImageDatastore(Input_Layer_Size ,Validation_Dataset);

Resized_Testing_Dataset    = augmentedImageDatastore(Input_Layer_Size ,Testing_Dataset);

 

 

 

 

 

% 获取特征学习层和分类器层的名称

Feature_Learner   = net.Layers(142).Name;

Output_Classifier = net.Layers(144).Name;

% 计算数据集的类别数目

Number_of_Classes = numel(categories(Training_Dataset.Labels));

% 创建新的全连接特征学习层

New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...

    'Name', 'Coal Feature Learner', ...

    'WeightLearnRateFactor', 10, ...

    'BiasLearnRateFactor', 10);

% 创建新的分类器层

New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');

% 获取完整网络架构

Network_Architecture = layerGraph(net);

% 替换网络中的特征学习层和分类器层

New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);

New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);

0Y_020m

---

作者:我爱C编程 来源:我爱C编程
本站最新成功开发工程项目案例
相关文章
相关评论
发表我的评论
  • 大名:
  • 内容:
本类固顶
  • 没有
  • FPGA/MATLAB商业/科研类项目合作(www.store718.com) © 2025 版权所有 All Rights Reserved.
  • Email:1480526168@qq.com 站长QQ: 1480526168