1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/ZJaclphu
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
ResNet系列网络,图像分类领域的知名算法,经久不衰,历久弥新,直到今天依旧具有广泛的研究意义和应用场景。被业界各种改进,经常用于图像识别任务。ResNet-18,数字代表的是网络的深度,也就是说ResNet18 网络就是18层的吗?实则不然,其实这里的18指定的是带有权重的 18层,包括卷积层和全连接层,不包括池化层和BN层。图像分类(Image Classification)是计算机视觉中的一个基础任务,将图像的语义将不同图像划分到不同类别。很多任务也可以转换为图像分类任务。比如人脸检测就是判断一个区域内是否有人脸,可以看作一个二分类的图像分类任务。
4.部分源码
.......................................................................
tempLayers = [
additionLayer(2,"Name","res5b")
reluLayer("Name","res5b_relu")
globalAveragePooling2dLayer("Name","pool5")
fullyConnectedLayer(10,"Name","fc10")
softmaxLayer("Name","prob")
classificationLayer("Name","ClassificationLayer_predictions")];
LG = addLayers(LG,tempLayers);
% clean up helper variable
clear tempLayers;
LG = connectLayers(LG,"pool1","res2a_branch2a");
LG = connectLayers(LG,"pool1","res2a/in2");
LG = connectLayers(LG,"bn2a_branch2b","res2a/in1");
LG = connectLayers(LG,"res2a_relu","res2b_branch2a");
LG = connectLayers(LG,"res2a_relu","res2b/in2");
LG = connectLayers(LG,"bn2b_branch2b","res2b/in1");
LG = connectLayers(LG,"res2b_relu","res3a_branch2a");
LG = connectLayers(LG,"res2b_relu","res3a_branch1");
LG = connectLayers(LG,"bn3a_branch1","res3a/in2");
LG = connectLayers(LG,"bn3a_branch2b","res3a/in1");
LG = connectLayers(LG,"res3a_relu","res3b_branch2a");
LG = connectLayers(LG,"res3a_relu","res3b/in2");
LG = connectLayers(LG,"bn3b_branch2b","res3b/in1");
LG = connectLayers(LG,"res3b_relu","res4a_branch2a");
LG = connectLayers(LG,"res3b_relu","res4a_branch1");
LG = connectLayers(LG,"bn4a_branch1","res4a/in2");
LG = connectLayers(LG,"bn4a_branch2b","res4a/in1");
LG = connectLayers(LG,"res4a_relu","res4b_branch2a");
LG = connectLayers(LG,"res4a_relu","res4b/in2");
LG = connectLayers(LG,"bn4b_branch2b","res4b/in1");
LG = connectLayers(LG,"res4b_relu","res5a_branch2a");
LG = connectLayers(LG,"res4b_relu","res5a_branch1");
LG = connectLayers(LG,"bn5a_branch1","res5a/in2");
LG = connectLayers(LG,"bn5a_branch2b","res5a/in1");
LG = connectLayers(LG,"res5a_relu","res5b_branch2a");
LG = connectLayers(LG,"res5a_relu","res5b/in2");
LG = connectLayers(LG,"bn5b_branch2b","res5b/in1");
net = trainNetwork(XTrain, YTrainCat, LG, options);
save Res18.mat net
A732