您现在的位置:首页 >> 机器学习 >> 内容

m基于深度学习网络的性别识别系统matlab仿真,带GUI界面

时间:2024/2/4 20:58:54 点击:

  核心提示:0Y_014m,包括程序操作录像...

1.完整项目描述和程序获取

>面包多安全交易平台:https://mbd.pub/o/bread/ZZqblZhs

>如果链接失效,可以直接打开本站店铺搜索相关店铺:

点击店铺

>如果链接失效,程序调试报错或者项目合作可以加微信或者QQ联系。

2.部分仿真图预览


3.算法概述

      性别识别是计算机视觉领域的一个重要任务,它涉及到从图像或视频中自动检测并识别出人物的性别。近年来,深度学习,特别是卷积神经网络(CNN)、googlenet网络等,已成为性别识别的主流方法。

4.部分源码

% 获取特征学习层和分类器层的名称

Feature_Learner   = net.Layers(142).Name;

Output_Classifier = net.Layers(144).Name;

% 计算数据集的类别数目

Number_of_Classes = numel(categories(Training_Dataset.Labels));

% 创建新的全连接特征学习层

New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...

    'Name', 'Coal Feature Learner', ...

    'WeightLearnRateFactor', 10, ...

    'BiasLearnRateFactor', 10);

% 创建新的分类器层

New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');

% 获取完整网络架构

Network_Architecture = layerGraph(net);

% 替换网络中的特征学习层和分类器层

New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);

New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);

 

 

% 设置训练选项

maxEpochs = NEpochs;

Minibatch_Size = NMB;

Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);

Training_Options = trainingOptions('sgdm', ...

    'MiniBatchSize', Minibatch_Size, ...

    'MaxEpochs', maxEpochs, ...

    'InitialLearnRate', LR, ...

    'Shuffle', 'every-epoch', ...

    'ValidationData', Resized_Validation_Dataset, ...

    'ValidationFrequency', Validation_Frequency, ...

    'Verbose', false, ...

    'Plots', 'training-progress');

 

% 使用训练选项训练网络

net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);

% 保存训练后的网络

save gnet.mat net

0Y_014m

---

作者:我爱C编程 来源:我爱C编程
本站最新成功开发工程项目案例
相关文章
相关评论
发表我的评论
  • 大名:
  • 内容:
本类固顶
  • 没有
  • FPGA/MATLAB商业/科研类项目合作(www.store718.com) © 2025 版权所有 All Rights Reserved.
  • Email:1480526168@qq.com 站长QQ: 1480526168