1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/ZZWWlptr
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
垃圾数量的急剧增加和垃圾中物质的复杂多样性带来了严重的环境污染和资源浪费问题。回收可以减少废物,但手工管道垃圾分拣工作环境恶劣,劳动强度大,分拣效率低。智能垃圾分类系统是基于深度学习网络的一种应用,它可以通过对大量的训练数据进行学习,从而实现对垃圾的自动分类。智能垃圾分类系统主要基于卷积神经网络(CNN)或递归神经网络(RNN),通过大量的训练数据学习并对输入的图像或文本进行处理,从而自动识别和分类垃圾。
4.部分源码
Name1 = get(handles.edit7, 'String');
NEpochs = str2num(get(handles.edit8, 'String'));
NMB = str2num(get(handles.edit9, 'String'));
LR = str2num(get(handles.edit10, 'String'));
Rate = str2num(get(handles.edit11, 'String'));
% 使用 imageDatastore 加载图像数据集
Dataset = imageDatastore(Name1, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 将数据集分割为训练集、验证集和测试集
[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, Rate, (1-Rate)/2, (1-Rate)/2);
% 加载预训练的 GoogleNet 网络
load googlenet.mat
% 获取输入层的大小
Input_Layer_Size = net.Layers(1).InputSize(1:2);
% 将图像数据集调整为预训练网络的输入尺寸
Resized_Training_Dataset = augmentedImageDatastore(Input_Layer_Size ,Training_Dataset);
Resized_Validation_Dataset = augmentedImageDatastore(Input_Layer_Size ,Validation_Dataset);
Resized_Testing_Dataset = augmentedImageDatastore(Input_Layer_Size ,Testing_Dataset);
% 获取特征学习层和分类器层的名称
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 计算数据集的类别数目
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的全连接特征学习层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);
% 创建新的分类器层
New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 获取完整网络架构
Network_Architecture = layerGraph(net);
% 替换网络中的特征学习层和分类器层
New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
0Y_007m
---