您现在的位置:首页 >> 机器学习 >> 内容

m基于Yolov2深度学习网络的螺丝检测系统matlab仿真,带GUI界面

时间:2024/4/28 1:08:23 点击:

  核心提示:0Y_026m,包括程序操作录像...

1.完整项目描述和程序获取

>面包多安全交易平台:https://mbd.pub/o/bread/ZpWVlpxp

>如果链接失效,可以直接打开本站店铺搜索相关店铺:

点击店铺

>如果链接失效,程序调试报错或者项目合作可以加微信或者QQ联系。

2.部分仿真图预览


3.算法概述

    基于YOLOv2(You Only Look Once version 2)深度学习网络的螺丝检测系统,是一种高效的目标检测方法,它在计算机视觉领域被广泛应用,尤其适合于实时检测和定位图像中的螺丝等小型物体。YOLOv2相较于初代YOLO,在速度与精度上都有显著提升,主要通过引入了一些关键的改进措施,如批标准化(Batch Normalization)、高分辨率分类器、多尺度预测、以及使用新网络架构Darknet-19等。

4.部分源码

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

Folder              = fullfile(pwd, 'train');% 设置检查点文件夹路径

data                = load(fullfile(pwd, 'GT.mat'));% 加载存储有标注信息的 GroundTruth.mat 文件

FACES               = data.gTruth;

FACES.imageFilename = fullfile(FACES.imageFilename);% 将图像文件路径与当前工作路径拼接

 

 

 

sidx             = randperm(size(FACES,1));% 打乱数据集索引

idx              = floor(0.75 * length(sidx));% 将75%的数据用作训练集

train_data       = FACES(sidx(1:idx),:);% 选取训练集

test_data        = FACES(sidx(idx+1:end),:);% 选取测试集

% 图像大小

image_size       = [224 224 3];

num_classes      = size(FACES,2)-1;% 目标类别数量

anchor_boxes = [% 预定义的锚框大小

    43 59

    18 22

    23 29

    84 109

    ];

% 加载预训练的 ResNet-50 模型

load mat\Resnet50.mat

 

% 用于目标检测的特征层

featureLayer = 'activation_40_relu';

% 构建 YOLOv2 网络

lgraph       = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

 

options = trainingOptions('sgdm', ...

    'MiniBatchSize', 8, ....

    'InitialLearnRate',1e-4, ...

    'MaxEpochs',200,...

    'CheckpointPath', Folder, ...

    'Shuffle','every-epoch', ...

    'ExecutionEnvironment', 'gpu');% 设置训练选项

% 训练 YOLOv2 目标检测器

[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);

save model.mat detector

0Y_026m

 

---


作者:我爱C编程 来源:我爱C编程
本站最新成功开发工程项目案例
相关文章
相关评论
发表我的评论
  • 大名:
  • 内容:
本类固顶
  • 没有
  • FPGA/MATLAB商业/科研类项目合作(www.store718.com) © 2025 版权所有 All Rights Reserved.
  • Email:1480526168@qq.com 站长QQ: 1480526168