1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/ZpWVlpxp
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
基于YOLOv2(You Only Look Once version 2)深度学习网络的螺丝检测系统,是一种高效的目标检测方法,它在计算机视觉领域被广泛应用,尤其适合于实时检测和定位图像中的螺丝等小型物体。YOLOv2相较于初代YOLO,在速度与精度上都有显著提升,主要通过引入了一些关键的改进措施,如批标准化(Batch Normalization)、高分辨率分类器、多尺度预测、以及使用新网络架构Darknet-19等。
4.部分源码
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
Folder = fullfile(pwd, 'train');% 设置检查点文件夹路径
data = load(fullfile(pwd, 'GT.mat'));% 加载存储有标注信息的 GroundTruth.mat 文件
FACES = data.gTruth;
FACES.imageFilename = fullfile(FACES.imageFilename);% 将图像文件路径与当前工作路径拼接
sidx = randperm(size(FACES,1));% 打乱数据集索引
idx = floor(0.75 * length(sidx));% 将75%的数据用作训练集
train_data = FACES(sidx(1:idx),:);% 选取训练集
test_data = FACES(sidx(idx+1:end),:);% 选取测试集
% 图像大小
image_size = [224 224 3];
num_classes = size(FACES,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小
43 59
18 22
23 29
84 109
];
% 加载预训练的 ResNet-50 模型
load mat\Resnet50.mat
% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);
options = trainingOptions('sgdm', ...
'MiniBatchSize', 8, ....
'InitialLearnRate',1e-4, ...
'MaxEpochs',200,...
'CheckpointPath', Folder, ...
'Shuffle','every-epoch', ...
'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);
save model.mat detector
0Y_026m
---