您现在的位置:首页 >> 机器学习 >> 内容

m分别使用BP神经网络和GRNN网络进行时间序列预测matlab仿真

时间:2023/1/8 18:08:48 点击:

  核心提示:05_051_m,包括程序操作录像+说明文档+参考文献...

1.完整项目描述和程序获取

>面包多安全交易平台:https://mbd.pub/o/bread/Y56TmpZr

>如果链接失效,可以直接打开本站店铺搜索相关店铺:

点击店铺

>如果链接失效,程序调试报错或者项目合作可以加微信或者QQ联系。

2.部分仿真图预览




3.算法概述

广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

  在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。

4.部分源码

SAFE10=[1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1];

%GRNN神经网络训练

char    = [D]';

T       = [SAFE];

Net     = newgrnn(char,T,25);

save Grnn.mat Net;

%%

%通过拟合的方法,得到未来的指标的数据

X0=Time';

%设置预测年份

X1=[Time,2016,2017,2018,2019,2020];

Y1=D(:,1);

Y2=D(:,2);

Y3=D(:,3);

Y4=D(:,4);

Y5=D(:,5);

Y6=D(:,6);

Y7=D(:,7);

Y8=D(:,8);

Y9=D(:,9);

Y10=D(:,10);

Y11=D(:,11);

Y12=D(:,12);

Y13=D(:,13);

Y14=D(:,14);

Y15=D(:,15);

%开始拟合

p=polyfit(X0,Y1,5);Y1_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);

p=polyfit(X0,Y2,5);Y2_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);

p=polyfit(X0,Y3,5);Y3_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);

p=polyfit(X0,Y4,5);Y4_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);

p=polyfit(X0,Y5,5);Y5_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y6,5);Y6_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y7,5);Y7_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y8,5);Y8_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y9,5);Y9_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y10,5);Y10_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y11,5);Y11_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y12,5);Y12_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y13,5);Y13_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y14,5);Y14_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

p=polyfit(X0,Y15,5);Y15_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;

05_051_m

作者:我爱C编程 来源:我爱C编程
本站最新成功开发工程项目案例
相关文章
相关评论
发表我的评论
  • 大名:
  • 内容:
本类固顶
  • 没有
  • FPGA/MATLAB商业/科研类项目合作(www.store718.com) © 2025 版权所有 All Rights Reserved.
  • Email:1480526168@qq.com 站长QQ: 1480526168