1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/Y56Ulpxu
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
BP神经网络是一种具有一个输入层,一个或多个隐含层和一个输出层的多层网络。隐含层和输出层上的每个神经元都对应一个激发函数和一个阈值。每一层上的神经元都通过权重与其相邻层上的神经元相互连接。对于输入层上的神经元其阈值为零,其输出等于输入。图2为单隐含层的BP神经网络的一般结构。
4.部分源码
% 数据输入
inv=[189.6 244.2 328.5 405.3 487.5 568.6 669.9 801.6 785.9 859.2 979.7 1086.3 1241];
d1=[15.3 16.6 17.2 22.8 37.6 30.8 38.9 50.8 58.2 41.2 55.8 71.7 82.3];
d2=[117.7 140.7 177.8 209.8 247.7 290.8 343.2 337.1 308.1 353.6 350.1 367.2 415.7];
d3=[56.6 86.9 133.5 172.6 202.2 247 287.8 413.7 419.6 464.4 573.8 647.4 742.1];
f=[822.3 959.7 1198.4 1607.5 1997.6 2380.9 2683.8 2798.9 2897.4 3253 3561 3882 4433];
k=1991:1:2003;
% 先赋予0值
p1=zeros(1,13);p2=zeros(1,13);p3=zeros(1,13);t=zeros(1,13);
p1(1)=d1(1);for i=2:13 p1(i)=0.*d1(i)+p1(i-1);end
p2(1)=d2(1);for i=2:13 p2(i)=0.1*d2(i)+p2(i-1);end
p3(1)=d3(1);for i=2:13 p3(i)=0.1*d3(i)+p3(i-1);end
t(1)=f(1);for i=2:13 t(i)=0.1*f(i)+t(i-1);end
b=[p1;p2;p3;t]';
p=[(p1-mean(p1))./std(p1);(p2-mean(p2))./std(p2);(p3-mean(p3))./std(p3)];
tt=(t- mean(t))./std(t);%数据标准化处理,标准化为网络输入p,期望输出tt
%建立网络并训练
net=newff(minmax(p),[4,1],{'tansig','purelin'},'trainlm');
net.iw{1,1}=zeros(size(net.iw{1,1}))+0.5;
net.lw{2,1}=zeros(size(net.lw{2,1}))+0.75;
net.b{1,1}=zeros(size(net.b{1,1}))+0.5;
net.b{2,1}=zeros(size(net.b{2,1}));
net.trainParam.epochs=3000;
net.trainParam.goal =0.000005;
net=train(net,p,tt);
%网络仿真得到网络输出,并计算误差
tt1=sim(net,p);
to=tt1.*std(t)+mean(t);%利用标准化的逆变换得到t1的近似值to
a=zeros(1,13);a(1)=to(1);
for i=2:13 a(i)=(to(i)-to(i-1))*10; end %累减得到近似的实际产值a
r_net=(tt1-tt)./tt;%网络相对误差
r_add=(to-t)./t;%总产值累加数相对误差
r_real=(a-f)./f;%实际总产值相对误差
A204