1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/Y56ZlJ5y
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。
4.部分源码
.....................................................................
if sel == 1
figure;
subplot(211);
plot(Timesa,ay1,'b');
hold on
plot(Timesa(locsy1),ay1(locsy1),'ro');
hold on
plot(Timesa(indxy1),ay1(indxy1),'k*');
hold on
stem(Timesa(locsy1),ay1(locsy1),'ro')
xlabel('time');
ylabel('ay');
subplot(212);
plot(Timesa,az1,'b');;
hold on
plot(Timesa(locsz1),az1(locsz1),'ro');
hold on
plot(Timesa(indxz1),az1(indxz1),'k*');
hold on
stem(Timesa(locsz1),az1(locsz1),'ro')
xlabel('time');
ylabel('az');
Tay1 =[Timesa(locsy1)]';
Tby1 =[Timesa(indxy1)]';
Ay1 =[ay1(locsy1)]';
........................................................................
for i = 1:length(p1)-1
diff1(1,i)=p1(i+1)-p1(i);
diff2(1,i)=p2(i+1)-p2(i);
end
5*mean(diff1)
5*mean(diff2)
ay=mean(sqrt(ax1(locsz1).^2 + ay1(locsz1).^2 + az1(locsz1).^2))
end
if sel == 2
figure;
subplot(211);
plot(Times2,ay2,'b');
hold on
plot(Times2(locsy2),ay2(locsy2),'ro');
hold on
plot(Times2(indxy2),ay2(indxy2),'k*');
hold on
stem(Times2(locsy2),ay2(locsy2),'ro')
xlabel('time');
ylabel('ay');
subplot(212);
plot(Times2,az2,'b');;
hold on
plot(Times2(locsz2),az2(locsz2),'ro');
hold on
plot(Times2(indxz2),az2(indxz2),'k*');
hold on
stem(Times2(locsz2),az2(locsz2),'ro')
xlabel('time');
ylabel('az');
ptime1 = Times2(locsy2);
ptime2 = Times2(indxz2);
for i = 1:length(ptime1)-1
diff1(1,i)=ptime1(i+1)-ptime1(i);
diff2(1,i)=ptime2(i+1)-ptime2(i);
end
2*mean(diff1)
2*mean(diff2)
% figure;
% plot(ptime1-ptime2);
...................................................................
for i = 1:length(ptime1)-1
diff1(1,i)=ptime1(i+1)-ptime1(i);
diff2(1,i)=ptime2(i+1)-ptime2(i);
end
2*mean(diff1)
2*mean(diff2)
figure;
plot(ptime1-ptime2);
p1=Times2(indxy2(4:end));
p2=Times2(indxz2);
for i = 1:length(p1)-1
diff1(1,i)=p1(i+1)-p1(i);
diff2(1,i)=p2(i+1)-p2(i);
end
5*mean(diff1)
5*mean(diff2)
ay=mean(sqrt(ax3(locsz3).^2 + ay3(locsz3).^2 + az3(locsz3).^2))
end
A312