1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/ZpaVmZZv
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
低密度奇偶校验码(Low-Density Parity-Check Code, LDPC码)因其优越的纠错性能和近似香农极限的潜力,在现代通信系统中扮演着重要角色。归一化最小和(Normalized Min-Sum, NMS)译码算法作为LDPC码的一种高效软译码方法,通过调整归一化因子来改善其性能。而基于遗传优化的NMS译码算法最优归一化参数计算,旨在通过进化计算策略自动寻找最佳的归一化参数,进一步提升译码性能。
4.部分源码
......................................................................
for i=1:Iter
i
for j=1:Npeop
if func_obj(x1(j,:))<pbest1(j)
p1(j,:) = x1(j,:);%变量
pbest1(j) = func_obj(x1(j,:));
end
if pbest1(j)<gbest1
g1 = p1(j,:);%变量
gbest1 = pbest1(j);
end
v1(j,:) = Wmax*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
x1(j,:) = x1(j,:)+v1(j,:);
for k=1:dims
if x1(j,k) >= Xmax
x1(j,k) = Xmax;
end
if x1(j,k) <= Xmin
x1(j,k) = Xmin;
end
end
for k=1:dims
if v1(j,k) >= Vmax
v1(j,k) = Vmax;
end
if v1(j,k) <= Vmin
v1(j,k) = Vmin;
end
end
end
Error2(i)=gbest1
end
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');
.......................................................
fitness=mean(Ber);
figure
semilogy(SNR, Ber,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);
xlabel('Eb/N0(dB)');
ylabel('Ber');
title(['归一化最小和NMS,GA优化后的alpha = ',num2str(aa)])
grid on;
save NMS4.mat SNR Ber Error2 aa
0X_057m
---