1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/Y56Tmptx
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。
4.部分源码
%% 产生初始粒子和速度
for i=1:sizepop
%随机产生一个种群
pop(i,:)=init+range*rand(1,n); %初始种群
V(i,:)=rand(1,n); %初始化速度
%计算适应度
fitness(i)=Rastrigrin(pop(i,:)); %染色体的适应度
end
%% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:); %全局最佳
gbest=pop; %个体最佳
fitnessgbest=fitness; %个体最佳适应度值
fitnesszbest=bestfitness; %全局最佳适应度值
%% 迭代寻优
for i=1:maxgen
ind_1=ind;
factor=calfactor(pop,sizepop,zbest);
if i==1
ind_1=1;
end
ind=fuzzyclassification(factor,ind_1);
if ind==1
c1=c1+unifrnd(0.05,0.1);
c2=c2-unifrnd(0.05,0.1);
elseif ind==2
c1=c1+0.5*unifrnd(0.05,0.1);
c2=c2-0.5*unifrnd(0.05,0.1);
elseif ind==3
c1=c1+0.5*unifrnd(0.05,0.1);
c2=c2+0.5*unifrnd(0.05,0.1);
p=zbest;
d=unidrnd(n);
p(d)=p(d)+(popmax-popmin)*normrnd(0,sig^2);
p(find(p(:)>popmax))=popmax;
p(find(p(:)<popmin))=popmin;
cv=Rastrigrin(p);
if cv<fitnesszbest
zbest=p;
else
[aa,bb]=max(fitness);
pop(bb,:)=p;
end
else
c1=c1-unifrnd(0.05,0.1);
c2=c2+unifrnd(0.05,0.1);
end
w=1/(1+1.5*exp(-2.6*factor));
if c1<1.5
c1=1.5;
elseif c1>2.5
c1=2.5;
end
if c2<1.5
c2=1.5;
elseif c2>2.5
c2=2.5;
end
crange=c1+c2;
c1=(c1/crange)*4;
c2=(c2/crange)*4;
sig=sigmax-(sigmax-sigmin)*(i/maxgen);
for j=1:sizepop
%速度更新
V(j,:) = w*V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax))=Vmax;
V(j,find(V(j,:)<Vmin))=Vmin;
%种群更新
pop(j,:)=pop(j,:)+V(j,:);
pop(j,find(pop(j,:)>popmax))=popmax;
pop(j,find(pop(j,:)<popmin))=popmin;
%适应度值
fitness(j)=Rastrigrin(pop(j,:));
end
for j=1:sizepop
%个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
%群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i)=fitnesszbest;
end
A195