1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/ZJWTmphv
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的。LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题。不过相比于特征脸方法,LBP的识别率已经有了很大的提升。在[1]的文章里,有些人脸库的识别率已经达到了98%+。LBP是Local Binary Patterns的缩写,即局部二值模式。它是由T. Ojala, M. Pietikäinen和 D. Harwood等人在1994年提出来的,属于一种特殊的、简单有效的纹理特征描述子(Feature Descriptor)。
4.部分源码
...........................................................................
[filename,pathname]=uigetfile({'*.jpg';'*.tif'},'file selector');
str=[pathname filename];
I=imread(str);
axes(handles.axes1);
imshow(I);
lbp_face=[];
[lbp_face,feature]=lbpfeaturevector2(I,100,20);
axes(handles.axes2);
imshow(feature);
load('fb_lbp_face.mat')
ss=[];
ss=LBP_face(:,:);
ref_labels=label;
ref_label=number_label;
L=zeros(1,size(ss,2));
text=[];
%d=sum((A-B).^2);
for j=1:size(ss,2)
w=0;
for i=1:size(lbp_face,1)
w=w+(((ss(i,j)-lbp_face(i,1)).^2)./(ss(i,j)+lbp_face(i,1)+(1e-10)));%chi aquare statistic
end
w=sqrt(w);
L(j)=w;
end
[value,idx]=sort(L,'ascend');
sort_labels=ref_labels(idx);
sort_label1=ref_label(idx);
% set(sort_label,'String',sort_label1);
sort_label=cell2mat(sort_labels(1));
% sort_label=sort_label1{1};
if (sort_label1(1)<43)
str=['.\fb_face\' sort_label 'fb010_930831.jpg'];
end
if (sort_label1(1)>=43)&(sort_label1(1)<81)
str=['.\fb_face\' sort_label 'fb001d_931230.jpg'];
end
if (sort_label1(1)>=81)
str=['.\fb_face\' sort_label 'fb011d_931230.jpg'];
end
axes(handles.axes3);
imshow(str);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
clc
clear
close all;
A354