1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/Y56Ymphx
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
条码的检测在自动化数据采集中占重要地位,原始的采集均为一维采集,即利用红外光线等扫描器进行扫描,需要人工的进行对准,不仅费时,而且浪费人力,随着现代的摄像技术的不断发展,现在的条码可以直接通过摄像机采集整个的条码图像,然后利用计算机图像处理的技术识读条码,通过现代图像处理技术,对条码图像进行定位、分割、校正、识别。
对于条码的识别,由于采集的是条码的图像,这些图像往往包含了很多的信息,其他的一些字符,还有就是图像的质量都会对识别产生比较大的影响,所以识别的关键就在于将条码区域分割出来,对于分割条码,针对图像的特征,对于条码,纹理是条码的一个显著的特征,Jain等人研究了基于Gabor小波纹理分析的条码检测,Arnould等人利用梯度特征进行条码检测,在这里,本文针对条码图像的特征,将图像分成多个子区域,然后利用子区域的对比度,还有方向边缘强度等特征筛选出可能包含条码的图像子区域,然后利用图像的合并和补偿最终得到条码区域,得到条码区域后再利用hough变换,得到条码的倾斜方向,进而进行理想的校正,为条码的识别提供最好的图像。
4.部分源码
..................................................................
block_size=32;
k=1;
threshold=240;
grayimg=rgb2gray(origimg);
[M,N]=size(grayimg); %原图像大小
waitimg=imcrop(grayimg,[0 0 N-mod(N,block_size) M-mod(M,block_size)]);%待检图像
imshow(waitimg);
MM=floor(M/block_size);
NN=floor(N/block_size);
blockimg=mat2cell(waitimg,ones(MM,1)*block_size,ones(NN,1)*block_size); %将原图像分块成32x32
%特征检测
contrast_pixel=zeros(MM,NN);
Edge_num=zeros(MM,NN);
barcode_region=zeros(MM,NN);
for i=1:MM
for j=1:NN
contrast_pixel(i,j)=Contrast(blockimg{i,j},block_size); %对比度计算
if contrast_pixel(i,j)>50
barcode_region(i,j)=1;
end
end
end
%标记目标区域,补偿后得到条码区
[L,num] = bwlabel(barcode_region,8);
C2=matrix_hist(L,num);
[Max_num,Max_Label]=max(C2);
for i=1:MM
for j=1:NN
if L(i,j)~=Max_Label
blockimg{i,j}=0*blockimg{i,j};
end
end
end
waited_img=cell2mat(blockimg);
imshow(waited_img);
%提取出目标图像
[left,right,top,bottom]=Get_destimg(waited_img);
width=right-left;
height=bottom-top;
barcodeimg=imcrop(waitimg,[left,top,width,height]);
destimg=imcrop(waitimg,[left+width/2-50,top+height/2-50,100,100]);
%hough检测倾角
Binaryimg=Otsu(destimg); %二值化
edgeimg=edge(Binaryimg,'canny'); %边缘
theta=houghtheta(edgeimg)
%矫正图像
%h=imrotate(barcodeimg,theta,'bilinear');
h=rotate(barcodeimg,theta*3.1415926/180);
A304