您现在的位置:首页 >> 智能优化 >> 内容

一个基于matlab的标准PSO粒子群优化算法仿真

时间:2023/1/12 19:34:28 点击:

  核心提示:A218,包括程序操作录像...

1.完整项目描述和程序获取

>面包多安全交易平台:https://mbd.pub/o/bread/Y56Vkpps

>如果链接失效,可以直接打开本站店铺搜索相关店铺:

点击店铺

>如果链接失效,程序调试报错或者项目合作可以加微信或者QQ联系。

2.部分仿真图预览


3.算法概述

        在PSO中,群中的每个粒子表示为向量。在投资组合优化的背景下,这是一个权重向量,表示每个资产的分配资本。矢量转换为多维搜索空间中的位置。每个粒子也会记住它最好的历史位置。对于PSO的每次迭代,找到全局最优位置。这是群体中最好的最优位置。一旦找到全局最优位置,每个粒子都会更接近其局部最优位置和全局最优位置。当在多次迭代中执行时,该过程产生一个解决该问题的良好解决方案,因为粒子会聚在近似最优解上。

4.部分源码

c1=1.4962;             %学习因子1

c2=1.4962;             %学习因子2

w=0.7298;              %惯性权重

MaxDT=100;            %最大迭代次数

D=30;                  %搜索空间维数(未知数个数)

N=50;                  %初始化群体个体数目

eps=10^(-6);           %设置精度(在已知最小值时候用)

%------初始化种群的个体(可以在这里限定位置和速度的范围)------------

for i=1:N

    for j=1:D

        x(i,j)=randn;  %随机初始化位置

        v(i,j)=randn;  %随机初始化速度

    end

end

%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------

for i=1:N

    p(i)=fitness(x(i,:),D);

    y(i,:)=x(i,:);

end

pg=x(1,:);             %Pg为全局最优

for i=2:N

    if fitness(x(i,:),D)<fitness(pg,D)

        pg=x(i,:);

    end

end

%------进入主要循环,按照公式依次迭代,直到满足精度要求------------

for t=1:MaxDT

    for i=1:N

        v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));

        x(i,:)=x(i,:)+v(i,:);

        if fitness(x(i,:),D)<p(i)

            p(i)=fitness(x(i,:),D);

            y(i,:)=x(i,:);

        end

        if p(i)<fitness(pg,D)

            pg=y(i,:);

        end

    end

    Pbest(t)=fitness(pg,D);

end

plot(Pbest,'-bs',...

    'LineWidth',2,...

    'MarkerSize',6,...

    'MarkerEdgeColor','r',...

    'MarkerFaceColor',[0.7,0.7,0.4]);

A218

Tags:标准PSO 
作者:我爱C编程 来源:我爱C编程
本站最新成功开发工程项目案例
相关文章
  • 没有相关文章
相关评论
发表我的评论
  • 大名:
  • 内容:
本类固顶
  • 没有
  • FPGA/MATLAB商业/科研类项目合作(www.store718.com) © 2025 版权所有 All Rights Reserved.
  • Email:1480526168@qq.com 站长QQ: 1480526168