1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/Y52Tmplq
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分源码
3.部分仿真图预览
4.算法概述
电力工业是当今世界各国经济的重要组成部分,随着世界经济的不断发展,电网的建设和中长期规划和经济发展之间的矛盾变得越来越突出,对电力系统的需求也变得越来越大。在实际的电网建设过程中,合理的中长期的电网规划对整个区域的经济发展起到至关重要的作用。而不合理的规划不仅会增加建设成本,而且会影响整个电网运行的稳定性和可靠性。 介绍了常见的优化算法,包括线性规划,粒子群优化算法以及遗传优化算法,并提出了一种基于自适应交叉变异的遗传优化算法,使得选择的精英个体数量和参与变异的个体数量之间的比例达到最优。通过这种改进遗传优化算法可以有效解决传统优化算法所存在的局部优化问题。然后提出了一种投资费用和网络损耗费用最小化的电网规划数学模型,并将直流潮流,支路容量,决策变量取值范围以及电压降作为约束条件。最后将优化算法应用到电网规划中,通过 IEEE-6节点系统为例并通过MATLAB进行仿真计算和分析,从而证明算法在电网规划应用中的可行性。
遗传算法 (Genetic Algorithm,GA) 是一种基于规律进化的随机优化搜索算法,该算法最早是由Holland在1975年提出的。遗传算法的主要优势是通过对目标对象进行优化操作,并通过基于概率的搜索方法,获得相应的搜索空间,因此GA算法具有较强的全局搜索能力。由于遗传算法特有的全局搜索能力,其被广泛使用在各个领域,包括信号处理,机器学习以及控制域等。