1.完整项目描述和程序获取
>面包多安全交易平台:https://mbd.pub/o/bread/Y56Yk5xs
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
语音处理过程中受到各种各样噪声的干扰,不但降低了语音质量,而且还将使整个系统无法正常工作。因此,为了消除噪声干扰,在现代语音处理技术中,工业上一般采用语音增强技术来改善语音质量从而提高系统性能。基于短时幅度谱估计来研究语音增强,主要介绍了功率谱相减、维纳滤波法,并介绍了这几种语音增强方法的基本原理和实现方法。通过研究,我们得到在白噪声的条件下,这些语音增强方法具有很好的增强效果,可作为开发实用语音增强方法的基础。
4.部分源码
........................................... %分帧和加窗
FrameLen=fix(0.025*fs); %取25毫秒为一帧
overlap=FrameLen/2;
inc=FrameLen-overlap; %帧移
x_frame=enframe(x,FrameLen,inc); %分帧
nf=size(x_frame,1); % 帧数
win=hamming(FrameLen)';
x_window=[];
for k=1:nf
x_row=x_frame(k,:).*win; % 加窗
x_window=[x_window;x_row];
end
%对带噪语音进行DFT
y=fft(x_window');
ymag = abs(y);
yphase = angle(y);
NNoise=23; %取噪音段(语音的初始段)帧数
MN=mean(ymag(:,1:NNoise)')';
PN=mean(ymag(:,1:NNoise)'.^2)'; %初始噪声功率谱均值
NoiseCounter=0;%连续噪声段长度
SmoothFactor=9;%噪声平滑因子
Alpha=0.95; %语音平滑因子
SNRPre=ones(size(MN));
%维纳滤波
for k=1:nf
if k<=NNoise
SpeechFlag=0;
NoiseCounter=NNoise;
else
NoiseMargin=3;
HangOver=8;
SpectralDist= 20*(log10(ymag(:,k))-log10(MN));
SpectralDist(find(SpectralDist<0))=0;
Dist=mean(SpectralDist);
if (Dist < NoiseMargin)
NoiseFlag=1;
NoiseCounter=NoiseCounter+1;
else
NoiseFlag=0;
NoiseCounter=0;
end
if (NoiseCounter > HangOver)
SpeechFlag=0;
else
SpeechFlag=1;
end
end
if SpeechFlag==0
MN=(SmoothFactor*MN+ymag(:,k))/(SmoothFactor+1); %更新噪声均值
PN=(SmoothFactor*PN+(ymag(:,k).^2))/(1+SmoothFactor); %更新噪声功率
end
A288